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Abstract

The redundancy allocation problem (RAP) aims to find an optimal allocation of redundant components
subject to resource constraints. In this paper, mixed integer linear programming (MILP) models and
MILP-based algorithms are proposed for complex system reliability redundancy allocation problem with
mixed components, where the system have bridges or interconnecting subsystems and each subsystem
can have mixed types of components. Unlike the other algorithms in the literature, the proposed MILP
models view the problem from a different point of view and approximate the nonconvex nonlinear system
reliability function of a complex system using random samples. The solution to the MILP converges to
the optimal solution of the original problem as sample size increases. In addition, data aggregation-based
algorithms are proposed to improve the solution time and quality based on the proposed MILP models.
A computational experiment shows that the proposed models and algorithms converge to the optimal or
best-known solution as sample size increases. The proposed algorithms outperform popular metaheuristic
algorithms in the literature.

1 Introduction

In reliability analysis, the redundancy allocation problem (RAP) aims to maximize the system reliability by
allocating redundant components subject to resource constraints. The system has n subsystems and each
subsystem can have multiple redundant components, which allows a subsystem to function if at least one
component is functioning. If a subsystem contains one type of redundant components, the subsystem is called
homogeneous. If a subsystem is allowed to have multiple types of redundant components, the subsystem is
called heterogeneous, which is also referred to as a subsystem with mixed components. The system is called
heterogeneous if there exists at least one heterogeneous subsystem. Heterogeneous systems are also referred to
as systems with mixed components. For RAP, one of the fundamental and popular objectives is to maximize
the system reliability by placing redundant components in the subsystems while satisfying resource constraints
for m resources.

For both homogeneous and heterogeneous systems, system types are defined based on the system structure
or connections between the subsystems. In Figure 1, examples for three system types are presented. In a series
system such as the system in Figure 1(a), subsystems are connected in a series, and failure of one subsystem
makes the entire system fail. In a parallel system such as the system in Figure 1(b), subsystems are located
in parallel, and the entire system fails only if all subsystems fail. When each subsystem of a series system
contains a parallel system, the system is called series–parallel. When each subsystem of a parallel system
contains series system, the system is called parallel–series. Finally, a system is referred to as complex when
the system is more complicated than the aforementioned systems. For example, in Figure 1(c), the system
has a subsystem connecting the parallel series subsystems, which is called a bridge.

RAP has been extensively studied for decades since being introduced in the 1950s by Bellman and Dreyfus
[5] and Gordon [14]. It is getting increasing attention in recent years as well due to increasing level of
sophistication in high-tech industrial processes [20]. Since the 1950s, many publications have studied RAP
using different system types and structures, performance measures, and optimization algorithms. In terms
of performance measures, the most popular measure is maximization of system reliability given a limited
amount of resources, while other popular performance measures include minimization of cost given a lower
bound for reliability [12, 13], maximization of percentile life of system [10, 16, 29], multi-objective problems
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Figure 1: System types

simultaneously optimizing reliability and cost [8, 9]. Because of their higher flexibility than homogeneous
systems, recent studies focus on heterogeneous systems for various settings such as reliability maximization
for series–parallel systems [22] or series–parallel multistate systems [36, 23], cost minimization for series–
parallel systems [32]. Out of all the variations, we study heterogeneous systems to maximize the system
reliability given a limited amount of resources. For recent surveys of the broader literature, the reader is
referred to Kuo and Wan [20] and Lad et al. [21].

In terms of solution methodologies and algorithms for RAP, many studies focus on heuristic or metaheuris-
tics such as genetic algorithms (GA) [3, 11, 35], tabu search [18, 19, 30], particle swarm optimization (PSO)
[37], and ant colony algorithms [24] due to the complex structure of the problem. Even for the simplest system
setting, a homogeneous series system, RAP is NP-hard [7] and is difficult to solve as the objective function
is nonconvex and nonlinear. Hence, only a limited number of exact algorithms have been proposed. Ha and
Kuo [15] proposed a branch-and-bound algorithm based on nonconvex integer linear programming formulation
for complex homogeneous systems. Caserta and Voß[6] proposed MILP for heterogeneous series systems by
transforming the original problem into a multiple-choice knapsack problem. Sung and Cho [33, 34] proposed
an exact algorithm for series systems with multiple choice constraints, where multiple choice constraints imply
heterogeneity.

In this paper, complex systems with mixed components (heterogeneous) subject to linear resource con-
straints are studied. The system contains bridges, such as Figure 1(c), or interconnected subsystems, and
each subsystem can have mixed types of components. For this complex system with mixed components,
MILP models and algorithms are proposed based on random samples. To our knowledge, our model is the
first MILP model for complex systems approximating the complex system reliability, while other studies em-
ploy metaheuristics or work directly with nonconvex nonlinear system reliability to solve the problem. Data
aggregation-based algorithms are also proposed using the MILP models and adopting the Aggregate and Iter-
ative Disaggregate (AID) algorithm framework developed by Park and Klabjan [28]. AID is an optimization
algorithmic framework guaranteeing optimality by iteratively solving the problem with aggregated data. The
algorithm is effective when the data size is large and has been successfully applied to select machine learning
problems minimizing absolute fitting errors such as least absolute deviation regression, support vector machine
(SVM) [28], and regression subset selection [27]. While the AID algorithm proposed by Park and Klabjan
[28] can be used for non-machine learning problems following certain structures, tailored algorithmic design is
required for a new problem. There are also iterative data aggregation-based algorithms for SVM [38, 39]. For
a review of other non-iterative aggregation-based algorithms and non-sample related aggregation-based algo-
rithms, the reader is referred to Park and Klabjan [27]. In all of the previous iterative data aggregation-based
algorithms in the literature, averaging the samples (observations or records) plays a key role in data aggrega-
tion. The aggregated data is typically obtained by summing or averaging the samples in the clusters. On the
other hand, our aggregation procedure is based on the minimum vector of the samples in each cluster, which
is a new and distinguishing feature of our AID algorithm. Finally, the proposed algorithms are compared with
two popular metaheuristic algorithms, GA and PSO, where the implementations are based on Ardakan et al.
[3] and Wang and Li [37].

Our contributions can be summarized as follows.

1. For the first time in the literature, MILP models are proposed for complex systems to approximate
nonconvex and nonlinear system reliability. While MILP for heterogeneous series–parallel systems [6]
and branch-and-bound algorithm for homogeneous complex systems [15] show excellent performances,
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no exact or guaranteed convergent algorithm is available for complex heterogeneous systems. Our MILP
models view the problem from a completely different angle and can easily incorporate new constraints.
Hence, our MILP models have the potential to be used for other complex network reliability analyses.

2. AID algorithm is proposed to improve the solution quality and speed of the MILP model. By developing
problem-specific design of the AID algorithm for the MILP model, the convergence of the algorithm is
shown. Unlike the other AID or iterative data aggregation algorithms in the literature, minimum vectors
are used to aggregate the data instead of average vectors. Our AID algorithms converge to an optimal
solution of the proposed MILP, while it is also capable of checking the solution quality with respect to
the original objective function in each iteration.

3. While the proposed models and algorithms are not exact, the computational experiment shows the
convergence to optimum as sample size increases and the gaps from the optimal solution are small.
Among all proposed algorithms, running AID multiple times with small-size sample sets, referred to
as AIDrep, shows the best in terms of solution speed and quality. Further, the proposed algorithms
outperform the benchmark metaheuristic algorithms.

The paper is structured as follows. In Section 2, the notation and mathematical formulation of RAP for
the complex system are introduced and MILP models based on random samples are proposed. In Section
3, AID algorithms based on the MILP models are proposed. In Section 4, computational experiments are
presented.

2 MILP Models

In this section, MILP models are developed for heterogeneous complex systems based on sampling and graph
representation. In Section 2.1, the notations and mathematical formulation are first introduced for the reli-
ability redundancy allocation problem of the complex systems. Next, in Sections 2.2–2.4, MILP models are
developed for the simpler version, homogeneous complex system, as the derivations are more straightforward.
Finally, the models are extended to complex heterogeneous systems in Section 2.5.

2.1 Reliability redundancy allocation problem for complex systems

In this section, mathematical formulations are introduced for RAP of complex systems with a few illustrative
examples. Through this section and the rest of the paper, the notations summarized in Table 1 are used.
Among the notations introduced, the decision variables are xjh and x, and functions gi(x), f(x), Rj , and Qj
depend on x. All other notations are problem parameters and sets.

In Sections 2.2 - 2.4, homogeneous systems are considered to develop MILPs where xjh, rjh, ujh, and aijh
are defined only for h = 1. Hence, for notational convenience, let us drop h and use xj , rj , uj , and aij in the
corresponding sections for homogeneous systems.

For heterogeneous systems, the reliability redundancy allocation problem is written as

max{f(x)|gi(x) ≤ bi, i ∈ I;
∑
h∈Hj

xjh ≥ 1, j ∈ J ; 0 ≤ xjh ≤ ujh, h ∈ Hj , j ∈ J}, (1)

where xjh is bounded above by ujh, h ∈ Hj , j ∈ J . Function f is defined with component reliability rjh for
h ∈ Hj , j ∈ J , and each subsystem must have at least one component (

∑
h∈H xjh ≥ 1, j ∈ J).

In Problem (1), the system reliability function f depends on the configuration and structure of the system.
There are also variations in resource function gi, i ∈ I because gi can be a nonlinear function, a linear function,
or more complex functions. In this study, resource function gi is assumed to be linear. Hence, (1) can be
written as

max{f(x)|A>i x ≤ bi, i ∈ I;
∑
h∈Hj

xjh ≥ 1, j ∈ J ; 0 ≤ xjh ≤ ujh, h ∈ Hj , j ∈ J}. (2)

Note that, due to the resource constraint, there is an implied upper bound for xjh, mini∈Ib bi
aijh
c. Hence, the

user provided upper bound ujh may be updated by ujh = min
{
ujh,mini∈Ib bi

aijh
c
}

for all h ∈ Hj and j ∈ J .

In our implementation, ujh is strengthened further. Because each system requires at least one component

placed, ujh is updated by ujh = min
{
ujh,mini∈Ib

bi−
∑
j′∈J\{j} a

min
ij′

aijh
c
}

for all h ∈ Hj and j ∈ J , where
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Notation Description

n number of subsystems in the system
J set of subsystems, J = {1, 2, · · · , n}
m number of resources
I set of resources, I = {1, 2, · · · ,m}
nH
j number of heterogeneous component types at subsystem j ∈ J

nH number of heterogeneous component types for each subsystem, when nH
j = nH for all j ∈ J

Hj set of heterogeneous component types at subsystem j ∈ J , where Hj = {1, 2, · · · , nH
j }

xjh number of type h ∈ Hj components at subsystem j ∈ J
rjh component reliability of type h ∈ Hj at subsystem j ∈ J
x solution matrix of xjh, h ∈ Hj , j ∈ J
gi(x) amount of resource i required for x, i ∈ I
bi amount of resource i available, i ∈ I
f(x) system reliability for solution x
aijh amount of resource i required for a type h component at subsystem j, i ∈ I, h ∈ Hj , j ∈ J
Rj reliability of subsystem j for solution x (=Rj(x))
Qj = 1−Rj

Ai matrix of aijh, h ∈ Hj , j ∈ J for resource i ∈ I
b vector of bi, i ∈ I
ujh upper bound of xjh, h ∈ Hj , j ∈ J

Table 1: List of notation

amin
ij′ = minh∈Hj′{aij′h} for j′ ∈ J . This formula decreases the available amount of resource i ∈ I by assuming

the minimum possible usage of resource i to have one component for each subsystem except for j ∈ J .
In Figure 2, four example complex systems are presented to illustrate how f is defined. The example systems

either have bridges or interconnecting subsystems. Subsystem j ∈ J has nH
j available types of components

and can use any combination of the components. Each subsystem fails only if all of the components in the
subsystem fail. Hence, reliability of subsystem j given solution x is defined as Rj(x) = 1−

∏
h∈Hj (1− rjh)xjh ,

and complement Qj(x) = 1 − Rj(x), j ∈ J , is also defined. For notational convenience, let us drop x from
the notation and use Rj and Qj instead of Rj(x) and Qj(x), respectively, in the rest of the paper. The four
examples in Figure 2 have the following system reliabilities given solution x.

System 1: f(x) = R5(1−Q1Q3)(1−Q2Q4) +Q5(1− (1−R1R2)(1−R3R4))

System 2: f(x) = R5(1−Q2Q4) +Q5(1− (1−R1R2)(1−R3R4))

System 3: f(x) = R6(1−Q1Q3Q4)(1−Q2Q5) +Q6(1− (1−R1R2)(1− (1−Q3Q4)R5))

System 4: f(x) = Q7[1− (1−R1R2)(1−R345R6)] +R7(1−Q1Q345)(1−Q2Q6)

For System 4, R345 is the reliability of Subsystems 3, 4, and 5, where R345 = 1 − Q345 and Q345 = Q3 +
R3(Q4 +Q5 −Q4Q5).

Note that it is difficult to define a generalized f(x) for a complex system. For example, f(x) for Systems
1–4 in Figure 2 cannot be generalized. On the other hand, for series systems and parallel systems such as
Figures 1(a) and 1(b), f(x) =

∏
j∈J Rj and f(x) = 1−

∏
j∈J Qj can be defined, respectively, for a different set

J . Further, the multiplication part of f(x) can be written in linear form by log transformation. For example,
ln(
∏
j∈J Rj) =

∑
j∈J ln(Rj) and ln(

∏
j∈J Qj) =

∑
j∈J ln(Qj) for series systems and parallel systems. This

linearization technique is one of the fundamental principles in formulating mathematical programming models
for series and parallel systems [6]. Because there is no closed form f(x) definition for a complex system and the
f(x) is complicated, it is not trivial to modify the objective function, which is nonconvex and nonlinear. To
overcome this difficulty, random samples are used to formulate MILP models in Sections 2.2–2.4 to approximate
the system reliability.

2.2 Graph representation and cuts

In this section, a procedure to represent the reliability network as a graph is presented. All reliability networks
can be converted into various forms of graphs and cuts can be used to analyze the system [17, 25, 26, 31].
Early works in 1970s [17, 25, 26] used graphs to analyze complex systems based on minimal paths minimal
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Figure 2: Complex (bridge or interconnected) network examples: (a) five subsystems including one bridge,
(b) five subsystems including one interconnecting subsystem, (c) six subsystems with two series–parallel sub-
systems including one bridge, (d) seven subsystems with two series–parallel subsystems including one bridge

cuts enumeration and a genetic algorithm was proposed later by Sallak et al. [31] based on the graph rep-
resentations. While many previous works use directed graphs, we focus on undirected graphs due to their
simplicity while achieving the same goal. First, a reliability system network is converted into an undirected
graph with a source (in) and a sink (out). In this new undirected graph, subsystem j becomes an edge and
the nodes tie multiple edges (subsystems) together. When the subsystems are parallel, multiple edges connect
the same two nodes in the new undirected graph.

The four reliability system networks in Figure 2 are converted into undirected graphs in Figure 3. Each
subsystem in Figure 2 is an edge in Figure 3 and the numbers next to the edges in Figure 3 are subsystem
numbers of the corresponding system. The nodes are created to represent the connections between subsystems.
When subsystems are parallel, the corresponding edges connect the same two nodes as presented in Figure
3(c). Note also that a subsystem in the reliability network can be converted into multiple edges as illustrated
in Figure 3(b). Subsystem 5 of System 2 in Figure 2(b) has connections to two subsystems and two edges are
created for System 2 in Figure 3(b).

Observe that, in the example systems in Figure 2, there exists a set of subsystems such that if all subsystems
in the set fail, then the entire system fails. In System 1, failure of Subsystems 1 and 3 makes the entire system
fail. Similarly, failures of Subsystems 1, 4, and 5 make the entire system fail. The undirected graphs in Figure
3 can be used to formulate this property. In graph theory, a cut is a partition of the nodes of a graph into two
disjoint subsets defined by a set of edges, and an s–t cut is a cut that partitions the nodes into two disjoint
subsets with source and sink nodes in different subsets. For example, edges {2, 3, 5} in Figure 3(a) forms an
s–t cut because eliminating the edges in the cut partitions the nodes into two disjoint subsets of the nodes.
An s–t cut is a minimal s–t cut if any proper subset of the cut does not form an s–t cut. For example, edges
{1, 3, 5} in Figure 3(a) is an s–t cut, but not a minimal s–t cut because a subset {1, 3} of the cut forms an s–t
cut.

Recall that the graphs in Figure 3 correspond to the networks in Figure 2 and consider an s–t cut {1,4,5}
in Figure 3(a) for System 1 in Figure 2(a). If Subsystems 1, 4, and 5 fail, then the system fails. In fact, for
any s–t cut, if all of the corresponding subsystems fail, then the system fails. Hence, by generating minimal
s–t cuts, the minimal set of cases where the failure of the subsystems leads to a failure of the entire system
can be obtained. To generate all minimal s–t cuts, the algorithms of Abel and Bicker [1] or Arunkumar and
Lee [4] can be used. Both of the algorithms are designed to output all possible minimal cuts of an undirected
graph. Alternatively, especially for a small graph, a simple enumeration approach also works. For each proper
subset C of the edge set of the graph, test if C is a minimal s–t cut. If yes, then output C. Otherwise, discard
C. The minimal s–t cuts for the four systems in Figure 3 are listed below.
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Figure 3: Graph representation of complex (bridge or interconnected) system examples

System 1: {1, 3}, {2, 4}, {1, 4, 5}, and {2, 3, 5}
System 2: {1, 3, 5}, {2, 4}, {1, 4, 5}, and {2, 3, 5}
System 3: {2, 5}, {1, 5, 6}, {1, 3, 4}, and {2, 3, 4, 6}
System 4: {1, 3}, {2, 6}, {1, 4, 5}, {1, 6, 7}, {2, 3, 7}, and {2, 4, 5, 7}

Observe that this result can also be used for series and parallel systems. For the series system with four
subsystems in Figure 1(a), four s–t cuts are available: {1}, {2}, {3}, and {4}. For the parallel system with two
subsystems in Figure 1(b), only one s-t cut {1, 2} is available.

2.3 Random sampling

In this section, a sampling (scenario) approach is proposed to approximate system reliability based on the graph
representation presented in Section 2.2. Many samples representing possible scenarios are first generated, then
the status of the system (success/fail) is determined for each sample given solution x. The overall reliability
can be approximated by the percentage of the samples with working status.

First, the core concept of the sampling procedure is discussed with an illustrative example in Figure 4. Let
us consider a subsystem with uj = 6. When a sample is generated, the status realizations (success/fail) are
generated for all six possible components, regardless of our choice of usage xj .

2
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1

5

6

(a) Sample 1

2

3

4

1

5

6

(b) Sample 2

2

3

4

1

5

6

(c) Sample 3

Figure 4: Illustration of sampling for subsystem with uj = 6

In Figures 4(a)–4(c), three samples are generated and each sample has six components with a mixed status
of success and failure. The large squares represent subsystem j and circles represent redundant components
(of one type), where up to six redundant components can be used. Gray and white circles indicate working and
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failing conditions, respectively, of the components. Because the components are redundant, they are located
in parallel.

In our sampling approach, we assume that the sampled components with lower indices must be used first.
In other words, if one component is used, Component 1 (circle with label 1) must be used. If two components
are used, Components 1 and 2 (circles with labels 1 and 2) must be used. With this assumption, the status of
the subsystem can be determined for xj by checking if there is any working component with index ≤ xj . For
example, if xj = 1, Component 1 must be used. Hence, with xj = 1, the subsystem is working for Sample 1,
whereas the subsystem fails for Samples 2 and 3. Similarly, with xj = 2, the subsystem is working for Samples
1 and 2, whereas the subsystem fails for Sample 3. After a simple analysis, we can conclude that xj = 1
makes the subsystem work 33.3% of the time (one out of three samples), xj = 2 makes the subsystem work
66.7% of the time (two out of three samples), and xj ≥ 3 makes the subsystem work 100% of the time. This
observation will be the basis of our MILP formulation later.

In the previous example, three samples are generated for one subsystem. Let us next discuss the generation
of multiple samples for the entire system. Let nS be the number of samples and S = {1, 2, · · · , nS} be the
set of samples. As previously assumed, all redundant components are tested across all subsystems, regardless
of the number of components used in x, and a sample includes success (denoted by 1) or failure (denoted by
0) realization of each component for all possible

∑
j∈J uj components in the system. The sample generation

algorithm is presented in Algorithm 1.

Algorithm 1 Sample Generation

Input: nS (number of samples)
Output: q (samples generated)

1: for s ∈ S = {1, 2, · · · , nS}
2: for j ∈ J
3: for e ∈ {1, · · · , uj}
4: Generate a uniform random number γ ∈ [0, 1]
5: if γ ≤ rj then ve = 1
6: if γ > rj then ve = 0
7: end for
8: if

∑
e∈{1,··· ,uj} ve = 0 then qsj = uj + 1

9: else qsj = min
{
e ∈ {1, · · · , uj}|ve = 1, e ∈ {1, · · · , uj}

}
10: end for
11: end for

In Algorithm 1, sample vector qs = {qs1, qs2, · · · , qsn} is generated for all s in sample set S. Let us consider
generation of qsj for subsystem j ∈ J for sample s ∈ S. In Lines 3–7, all possible uj redundant components
are tested to determine the status (success or fail). If the uniform random number is less than or equal to
rj , then the eth redundant component is working. The success/fail information of all components is stored in
a temporary vector v. Then, in Lines 8–9, the minimum number of redundant components is determined to
have at least one working component for sample s and stored as qsj . In words, qsj is the index of the first
redundant component with working condition (vi = 1). Note that

∑
e∈{1,··· ,uj} ve = 0 in Line 8 implies that

all components failed for this sample. In this case, qsj is set to uj + 1, which implies that the subsystem will
fail regardless of xj decision because xj cannot exceed uj . Note also that as soon as the first e with ve = 1 is
obtained in Line 5, the for loop in Lines 3–7 can be stopped and qsj Line 9 can be determined because qsj is
set by the first e with ve = 1. Hence, the algorithm can have improved running time.

Example. Consider subsystem j with uj = 4. Four redundant components are tested whether each component
works by comparing random number γ and reliability rj . Suppose we obtain v = (0, 1, 1, 0). This means that
the second and third redundant components work while the first and fourth components fail. By Line 8 of
Algorithm 1, qsj = 2 is obtained because 1 appears for the first time at index 2 of v. Now, if xj = 1, then we
must use the first redundant component and qsj = 2 implies subsystem j fails for sample s. On the other hand,
if xj ≥ 2, then subsystem j works for sample s. By repeating this procedure for all subsystems, a complete
sample qs is generated. Suppose qs = (1, 2, 3, 2, 1). Then, for a solution x = (2, 2, 1, 1, 1), Subsystems 3 and 4
fail because qs3 = 3 > 1 = x3 and qs3 = 2 > 1 = x3. For a different solution x = (1, 2, 3, 2, 2), all subsystems
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are working for sample s.

2.4 MILP models

Based on the cuts and random samples presented in the previous sections, MILP models are formulated in
this section. Multiple MILP models are proposed for easier derivations and explanations, but only the last
model is recommended.

First, consider the status of subsystem j ∈ J for sample s ∈ S. Let zsj be a binary variable to indicate the
status of subsystem j ∈ J for sample s ∈ S, where zsj = 1 indicates working or success and zsj = 0 indicates
failure. Constraint

xj ≥ qsjzsj
correctly defines zsj for j ∈ J and s ∈ S because zsj = 1 is possible only if xj ≥ qsj and zsj will be implicitly
maximized by the objective function presented later.

Next, consider the status of the overall system. Let nC be the number of cuts in the system and C =
{1, 2, · · · , nC} be the set of cuts. For cut c, let Jc be the set of subsystems in cut c ∈ C. For example, System
1 in Figures 2 and 3 has C = {1, 2, 3, 4}, J1 = {1, 3}, J2 = {2, 4}, J3 = {1, 4, 5}, and J5 = {2, 3, 5}. Let us
define binary variable ys for s ∈ S as follows.

ys =

{
1 if system works for sample s,
0 otherwise,

s ∈ S

For sample s ∈ S and cut c ∈ C, constraint ∑
j∈Jc

zsj ≥ ys

checks if the system fails due to cut c for sample s. Note that the system works for sample s only if
∑
j∈Jc zjs ≥

1 for all cuts in C.
Finally, the system reliability RS is defined as RS =

∑
s∈S ys
nS . Because maximizing RS and

∑
s∈S ys are

equivalent given a sample set S, the following MILP for (2) is formulated.

max
∑
s∈S

ys

s.t.
∑
j∈J

aijxj ≤ bi, i ∈ I,∑
j∈Jc

zsj ≥ ys, c ∈ C, s ∈ S,

xj ≥ qsjzsj , j ∈ J, s ∈ S,

1 ≤ xj ≤ uj , xj ∈ Z, j ∈ J ,

zsj ∈ {0, 1}, j ∈ J, s ∈ S,

ys ∈ {0, 1}, s ∈ S

(3)

Proposition 1. Let (x̄, z̄, ȳ) be an optimal solution for (3). As sample size nS increases,
∑
s∈S ȳs
nS converges

to f(x̄).

Observe that each sample s ∈ S is independent and identically distributed and
∑
s∈S ȳs
nS is the sample

average estimating the probability of working given x̄. Because f(x̄) is also the expected system reliability

given x̄, by the law of large numbers,
∑
s∈S ys
|S| converges to f(x̄) as sample size nS increases. Note that the

size of the binary variable matrix z is n×nS. Hence, the size of MILP (3) can be very large even for a system
with several subsystems and samples. For example, with 10 subsystems and 10,000 samples, the number of
binary variables in z is 100,000.

8
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Improved model

Note that identical samples can be generated multiple times. The number of binary variables can be decreased
by eliminating the duplicate samples and giving weights based on the number of duplicate samples. Let us
define a new sample set S̄ containing nonduplicate qs. Mathematically, S̄ = {s ⊆ S|qs 6= qs′ , s

′ ∈ S \ {s}}.
Let ws, s ∈ S̄, be the number of samples in S such that qs = qt, t ∈ S, and let n̄s = |S̄|. Then, a weighted
version of (3) can be formulated.

max
∑
s∈S̄

wsys

s.t.
∑
j∈J

aijxj ≤ bi, i ∈ I,∑
j∈Jc

zsj ≥ ys, c ∈ C, s ∈ S̄,

xj ≥ qsjzsj , j ∈ J, s ∈ S̄,

1 ≤ xj ≤ uj , xj ∈ Z, j ∈ J ,

0 ≤ ys ≤ 1, s ∈ S̄,

zsj ∈ {0, 1}, j ∈ J, s ∈ S̄

(4)

Note that, in (4), binary variables ys are relaxed to be continuous. Because the left hand side of
∑
j∈Jc zsj ≥ ys

is an integer and the objective function is maximizing ys, an optimal solution must have an integer value for
ys. The relative cardinality of |S̄| compared with |S| depends on the number of component types. If there is

a small number of subsystems or heterogeneous components, |S̄||S| can be very small. On the other hand, if the

system has many subsystems and heterogeneous components, then |S̄||S| can be almost equal to 1 as it is less

likely to have duplicate samples. In this case, (4) becomes less efficient.

Final model

Note that the number of binary variables in (4) is (n+ 1) · n̄s, which depends on the number of (nonduplicate)
samples. When nS ≈ n̄S = 16, 000, for System 1 with nH = 4, the number of binary variables zsj will be
approximately 78,000. Hence, solving (4) becomes intractable even for this small system with five subsystems.
To resolve this issue, an improved MILP is proposed by eliminating binary variables defined for samples.

Let Kj = {0, 1, 2, · · · , uj} be the set of possible number of components at subsystem j. In addition to
integer variables xj , let us define binary variables to represent the number of components in the subsystems.

xbjk =

{
1 if xj = k,
0 otherwise,

k ∈ Kj , j ∈ J

When these binary variables are used, exactly one of xbjk, k ∈ Kj , must be 1 for subsystem j ∈ J . Hence,

assignment constraints
∑
k∈Kj x

b
jk = 1, j ∈ J , must be included.

Next, consider a sample s ∈ S̄ for subsystem j ∈ J . If the number of components at subsystem j is greater
than qsj , then subsystem j is working for sample s. Let psjk indicate whether subsystem j is working when
there are k redundant components for sample s. If psjk = 1, then subsystem j is working when there are k
redundant components for sample s. If psjk = 0, then subsystem j is not working. Hence, psjk is defined
based on qsj .

psjk =

{
1 if k ≥ qsj ,
0 otherwise,

s ∈ S̄, k ∈ Kj , j ∈ J

With the new variables and parameters xbjk and psjk, binary variables zsj in (4) can be removed. In detail,
constraint ∑

k∈Kj psjk · x
b
jk

replaces zsj for j ∈ J and s ∈ S̄. The value of this equation will be either 0 or 1. The equation becomes 1 only
if xj = k and psjk = 1. Otherwise, when xj = k and psjk = 0, the equation becomes 0. Finally, the following

9
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MILP is proposed.

max
∑
s∈S̄

wsys (5a)

s.t.
∑
j∈J

aijxj ≤ bi, i ∈ I, (5b)∑
k∈Kj

xbjk = 1, j ∈ J, (5c)

∑
j∈Jc

∑
k∈Kj

psjk · xbjk ≥ ys, c ∈ C, s ∈ S̄, (5d)

xj =
∑
k∈Kj

k · xbjk, j ∈ J, (5e)

xbjk ∈ {0, 1}, k ∈ Kj , j ∈ J, (5f)

0 ≤ ys ≤ 1, s ∈ S̄, (5g)

1 ≤ xj ≤ uj , j ∈ J (5h)

Constraint (5b) is a resource constraint, and Constraint (5c) forces exactly one of xbjk, k ∈ Kj to be one to
define xj correctly in (5e). Constraint (5d) defines ys to check if the system is working for sample s ∈ S.
Because of the definition of xj in (5e), an integer requirement for xj ∈ Z in (5h) is not needed.

Note that the number of binary variables, n ·
(∑

j∈J(uj + 1)
)
, does not depend on the number of samples.

Although (5) requires more binary variables for the number of components used compared with (4), it can be
more efficient than the previous MILP models (3) and (4) when nS (or n̄S) is large. This is because the number
of constraints for

∑
j∈Jc zsj ≥ ys and xj ≥ qsjzsj in (3) is (n+ nC) · nS, whereas the number of corresponding

constraints (5d) of (5) is nC · nS. As nS increases, the difference in the number of constraints becomes large.

2.5 MILP for Heterogeneous Systems

Through Sections 2.2–2.4, MILP model (5) is developed to solve RAP for complex homogeneous systems.
In this section, MILP (5) is modified for complex heterogeneous systems. In Table 1, notations xjh, rjh,
aijh, and ujh are introduced for heterogeneous systems. Similar to the parameters and variables defined
for homogeneous system (Kj , x

b
jk, qsj , and psjk) in Sections 2.2–2.4, the following additional parameters and

decision variables can be defined for heterogeneous systems.

Kjh = {0, 1, 2, · · · , ujh}: set of possible number of type h components at subsystem j, h ∈ Hj , j ∈ J

xbjhk =

{
1 if xjh = k,
0 otherwise,

k ∈ Kjh, h ∈ Hj , j ∈ J

qsjh: outcome of type h component at subsystem j for sample s, h ∈ Hj , j ∈ J, s ∈ S̄

psjhk =

{
1 if k ≥ qsjh,
0 otherwise,

s ∈ S̄, k ∈ Kjh, h ∈ Hj , j ∈ J

Note that the graph representations presented in Section 2.2 can be directly used because the representations
do not distinguish homogeneous and heterogeneous subsystems. For the sampling procedure in Section 2.3,
the procedure in Algorithm 1 can be used with a few changes to generate qsjh for h ∈ Hj , j ∈ J, s ∈ S̄. Then,
nonduplicate set S is obtained from S̄. Based on these changes and some trivial modifications, MILP (5) can
be modified for heterogeneous systems as follows.

max
∑
s∈S̄

wsys (6a)

s.t.
∑
j∈J

∑
h∈Hj

aijhxjh ≤ bi, i ∈ I, (6b)

∑
j∈Jc

∑
h∈H

∑
k∈Kjh

psjhk · xbjhk ≥ ys, c ∈ C, s ∈ S̄, (6c)

10
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∑
k∈Kjh

xbjhk = 1, h ∈ Hj , j ∈ J, (6d)

xjh =
∑
k∈Kjh

k · xbjhk, h ∈ Hj , j ∈ J, (6e)

∑
h∈Hj

xjh ≥ 1, j ∈ J, (6f)

0 ≤ xjh ≤ ujh, xjh ∈ Z h ∈ Hj , j ∈ J, (6g)

xbjhk ∈ {0, 1}, k ∈ Kjh, h ∈ Hj , j ∈ J, (6h)

0 ≤ ys ≤ 1, s ∈ S̄ (6i)

Observe that all constraints are similar to those of (5), except for (6f). In (5), Constraint (5h) ensures at least
one component should be used for subsystem j. In (6), Constraint (6f) does the same role by summing all
mixed components in subsystem j.

The final remark is that the sample-based MILP formulations have the potential to be used for other
network reliability analyses. Note that any constraint on x can be easily added to (6). Hence, for other versions
of complex system RAP with different objective functions, (6) can be used with a few trivial modifications.
Further, by designing tailored constraints defining ys and sample data (psjk) structure, (6) can be used for
other network reliability analyses.

3 AID Algorithms

In this section, an AID algorithm is proposed for RAP based on the MILP model (6). The AID algorithm,
presented in Algorithm 2, follows the basic framework proposed by Park and Klabjan [28]. The algorithm
starts with initial clusters and aggregated data (Line 1), and iteratively disaggregate the clusters while the
optimality condition is not met (Lines 2–7). The only yet significant differences from the basic framework
of Park and Klabjan [28] are the aggregation technique in Line 3 and additional checkup in Line 6. First,
instead of the standard average function for data aggregation, the minimum function is used in Line 3. Second,
because the solution quality with respect to the original problem (2) can be checked given a feasible solution, in
each iteration of AID, the best solution for the original objective function f(x) is updated and kept separately
independent of the best sample-based objective value.

Algorithm 2 AID (tol)

Input: tol (tolerance for optimality gap)
1: Define initial clusters
2: Do
3: Create aggregated data and solve aggregated problem
4: Check optimality condition
5: if optimality condition is violated then decluster the current clusters
6: if f(xaid) > f(xbest) then update xbest

7: While optimality condition is not satisfied or optimality gap is greater than tol

The AID algorithm requires several mandatory components tailored to a particular optimization problem:
(i) definition of aggregated data, (ii) declustering procedure and criteria, (iii) definition of aggregated problem,
and (iv) optimality condition [28]. Let us first define sets related to clusters.

Kt = {1, 2, · · · , |Kt|}: index set of the clusters in iteration t
Ct = {Ct1,Ct2, · · · ,Ct|Kt|}: set of clusters in iteration t, where Ctξ is a subset of S̄ for any ξ in Kt

Next, given clusters Ct, the aggregated data are defined as follows.

qξjh = mins∈Ctξ{qsjh}, ξ ∈ Kt, h ∈ Hj , j ∈ J

pξjhk =

{
1 if k ≥ qξjh,
0 otherwise,

ξ ∈ Kt, k ∈ Kjh, h ∈ Hj , j ∈ J

11
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vξ =
∑
s∈Ctξ

ws, ξ ∈ Kt

We emphasize here that the definition of qξjh is distinguished from all existing AID implementations [27, 28]
because others use averages instead of minimum function. Recall that each sample in S̄ represents a scenario.
Given a solution x ∈ Zn+, a status function Vs(x) for sample s needs to be defined. Let Vs(x) = 1 if the system
is working with solution x for sample s ∈ S̄ and Vs(x) = 0 otherwise. Let us also define Vξ(x) for aggregated
sample ξ. For each cluster ξ ∈ Kt, the cluster is declustered or partitioned based on the following declustering
procedure.

1. If Vs(x) = Vξ(x) for all s ∈ Ctξ, do nothing.

2. If Vs(x) = 0 for all s ∈ Ctξ and Vξ(x) = 1, randomly divide Ctξ into two clusters.

3. Otherwise (0 <
∑
s∈Ctξ

Vs(x) < |Ctξ|), divide Ctξ into two clusters: Ct+1
ξ1 = {s ∈ Ctξ|Vs(x) = 1} and

Ct+1
ξ2 = {s ∈ Ctξ|Vs(x) = 0}

In words, the current cluster remains the same if the statuses of the original samples in the cluster are equal
to the status of the aggregated sample. Otherwise, the current cluster is partitioned based on the statuses of
the original samples.

The decision variables associated with S̄ are also redefined: yξ, tξjh, and zξk are defined similar to ys,
tsjh, and zsk, respectively. However, xj and aijh remain the same because they are not associated with the
samples. We start the analysis with the following property of aggregated samples.

Lemma 1. Let K and K′ be the index sets of clusters, and C and C′ be the corresponding sets of clusters.
Let us consider two aggregated samples ξ ∈ K and ξ′ ∈ K′ and the corresponding clusters Cξ and C′ξ′ with
Cξ ⊆ C′ξ′ . Then, for any feasible solution x̄ for (2), Vξ(x̄) ≤ Vξ′(x̄) holds.

Proof. Let qξ and qξ′ be the sample vectors for ξ ∈ K and ξ′ ∈ K′, respectively. Then, for any h ∈ Hj , j ∈
Jk, k ∈ K,

qξjh = min
s∈Cξ
{qsjh} ≥ min

s∈C′
ξ′

{qsjh} = qξ′jh

holds, where the inequality is true because Cξ ⊆ C′ξ′ and the equations are due to the definition. Recall that
qξjh is the minimum number of components needed to prevent failure of type h component at subsystem j
for sample ξ. Hence, given x̄, if the system is working for aggregated sample ξ, then it is also working for
aggregated sample ξ′ because qξjh ≥ qξ′jh. This ends the proof.

The aggregated problem is a weighted version of (6) and defined as follows.

Ft = max
∑
ξ∈Kt

vξyξ

s.t.
∑
j∈J

∑
h∈Hj

aijhxjh ≤ bi, i ∈ I,∑
j∈Jc

∑
h∈Hj

∑
k∈Kjh

pξjhk · xbjhk ≥ yξ, c ∈ C, ξ ∈ Kt,∑
h∈Hj

xjh ≥ 1, j ∈ J ,

xjh =
∑
k∈Kjh

k · xbjhk, h ∈ Hj , j ∈ J

0 ≤ xjh ≤ ujh, xjh ∈ Z h ∈ Hj , j ∈ J,

xbjhk ∈ {0, 1}, k ∈ Kjh, h ∈ Hj , j ∈ J ,

0 ≤ yξ ≤ 1, ξ ∈ Kt

(7)

Let X̄t = (x̄t, (x̄b)t, ȳt) be an optimal solution for (7). Then, x̄t can generate a feasible solution to (6)
because all binary variables can be determined given x̄t and samples in S̄. Let X∗ = (x∗, (xb)∗, y∗) be optimal
solutions for (6). Let x̄∗ be a feasible solution for (7) obtained by transforming x∗ and let x̂t be a feasible
solution for (7) obtained by transforming x̄t. In Proposition 2 and Lemma 2, the validity of optimality
condition and nonincreasing optimal objective function values of the aggregated problems are shown.
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Proposition 2. If Vs(x̄
t) = Vξ(x̄

t) for all s ∈ Ctξ and ξ ∈ Kt, then x̂t is an optimal solution.

Proof. First, let us assume that K is the index set of clusters where each cluster is a sample in S̄ and C be the
corresponding cluster set. Then, all samples s in Ctξ, ξ ∈ Kt, have corresponding clusters in C. Further, there

exists exactly one cluster in Kt such that Cξ′ ⊆ Ctξ for ξ′ ∈ K and ξ ∈ Kt. Note that, given x∗, Vs(x
∗) = y∗s

and Vξ′(x
∗) = ȳ∗ξ′ hold. Then, by Lemma 1, we must have y∗s ≤ ȳ∗ξ for any s ∈ Ctξ and ξ ∈ Kt.

Next, we derive∑
s∈S̄

vsy
∗
s =

∑
ξ∈Kt

∑
s∈Ctξ

vsy
∗
s ≤

∑
ξ∈Kt

∑
s∈Ctξ

vsȳ
∗
ξ =

∑
ξ∈Kt

vξ ȳ
∗
ξ ≤

∑
ξ∈Kt

vξ ȳ
t
ξ =

∑
ξ∈Kt

∑
s∈Ctξ

vsȳ
t
ξ =

∑
s∈S̄

vsȳ
t
s,

where the first inequality holds because y∗s ≤ ȳ∗ξ for all ξ ∈ Kt and s ∈ Ctξ, the second equality holds by the

definition, the second inequality holds because ȳt is an optimal solution for (7), and the last equality is true
because Vs(x̄

t) = Vξ(x̄
t).

Finally, the inequality
∑
s∈S̄ vsy

∗
s ≤

∑
s∈S̄ vsȳ

t
s implies that x̄t is an optimal solution for (6).

Lemma 2. For each iteration t ≥ 2, Ft−1 ≥ Ft holds.

Proof. For simplicity, let us assume that {Ct−1
1 } = Ct−1 \ Ct, {Ct1,Ct2} = Ct \ Ct−1, and Ct−1

1 = Ct1 ∪ Ct2.
That is, Ct−1

1 is the only cluster in Ct−1 such that the entries in Ct−1
1 have both 0 and 1 for Vs(x̄

t−1), and
Ct−1

1 is partitioned into Ct1 and Ct2 for iteration t.
We can derive

Ft−1 = vt−1
1 ȳt−1

1 +
∑

ξ∈Kt−1\{1}

vt−1
ξ ȳt−1

ξ ≥ vt−1
1 max{ȳt1, ȳt2}+

∑
ξ∈Kt−1\{1}

vt−1
ξ ȳtξ

= (vt1 + vt2) max{ȳt1, ȳt2}+
∑

ξ∈Kt−1\{1}

vt−1
ξ ȳtξ ≥ vt1ȳ

t
1 + vt2ȳ

t
2 +

∑
ξ∈Kt−1\{1}

vt−1
ξ ȳtξ

= vt1ȳ
t
1 + vt2ȳ

t
2 +

∑
ξ∈Kt\{1,2}

vtξ ȳ
t
ξ = Ft,

where the first inequality holds because Ct1 ⊆ Ct−1
1 and Ct2 ⊆ Ct−1

1 imply ȳt1 ≤ ȳt−1
1 and ȳt2 ≤ ȳt−1

1 by Lemma
1. Therefore, we have Ft−1 ≥ Ft.

Let Et = f(x̄t) for iteration t. Note that, during the iterations of AID, the best objective function
value of the original problem Ebestt can be updated by Ebestt = max{E1, E2, · · · , Et}. Then, by Lemma 2,
Ebestt ≤ Ft ≤ Ft−1 ≤ Ft−2 ≤ · · · ≤ F1 holds and the following proposition also holds.

Proposition 3. AID for (6) monotonically converges to the optimal solution.

We emphasize here that optimality of AID is with respect to a sample-based MILP model (6) and AID does
not guarantee optimality for the original problem (2). The relative optimality gap of AID can be calculated

with gap (%) =
Ft−Ebestt

Ebestt
× 100 and the algorithm terminates if this gap is less than the tolerance (Line 7 of

Algorithm 2).

4 Computational Experiment

In the computational experiment, six algorithms were tested.

1. MILP: MILP model (6) from Section 2
2. AID: AID algorithm from Section 3 with tol = 10−5 terminating with guaranteed optimality
3. AIDheur: AID algorithm with tol = 0.002 terminating without guaranteed optimality
4. AIDrep: multiple runs of AID with nS = 1000 and tol = 0.002
5. GA: multiple runs of genetic algorithm (GA)
6. PSO: multiple runs of particle swarm optimizaiton (PSO).
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Although the AID algorithm is designed to solve the problem optimally, there are several reasons why the
exact optimality for RAP is not as important as other problems. First, the base MILP model (6) is only
an approximation to the actual objective function. Second, the parameters of the original problem (such as
component reliability) are obtained from statistical estimation and are not exactly deterministic. Finally,
by relaxing the tolerance, execution time can be reduced [27]. Therefore, in addition to the original AID
algorithm, we test two heuristic versions of the AID algorithm AIDheur and AIDrep.

We will present three experiment sets in this section. We will first demonstrate the characteristics and
performances of MILP and AID. Second, we will compare all of the proposed algorithms, both exact approx-
imations and heuristics, to determine the most competitive algorithm. Third, because no exact algorithm
exists for (2), we will compare the best of the proposed algorithms with two metaheuristic algorithms in the
literature. In detail, the first set of experiment compares MILP and AID for benchmark instances for homo-
geneous systems in Section 4.2. Next, the second set of experiment compares MILP, AID, and AIDheur for
random instances for heterogeneous systems in Section 4.3. The results in Sections 4.2 and 4.3 show that
combining multiple runs of AIDheur with small-size sample sets can be beneficial. Hence, the performances of
all proposed algorithms including AIDrep are compared in Section 4.4. Finally the third set of experiment in
Section 4.5 compares AIDrep, the best algorithm among the four proposed algorithms, with two state-of-the-art
metaheuristic algorithms in the literature. The implementation details of the metaheuristic algorithms are
available in Section 4.5.

All algorithms are implemented in C# and CPLEX and a personal computer with 8 GB RAM and Intel
Core i7 (2.40 GHz dual core) was used. The source code of all proposed and benchmark algorithms is available

in the online supplement. Let f(x) and f̂(x) be the objective function values of x for the original problem (2)
and sample-based MILP (6), respectively. Let x∗ and x̂∗ be the optimal solutions for (2) and (6), respectively.
When the optimal solution is unknown, x∗ and x̂∗ are the best known solutions. To compare the performances
of different algorithms, multiple performance measures are used.

δ = |f(x̂∗)− f̂(x̂∗)|
∆ = f(x∗)− f(x̂∗)
%opt : percentage of obtaining an optimal solution (benchmark instances)
%best : similar to %opt, but used when exact optimality is not verified (random instances)
time: execution time in seconds

Note that our models optimize sample-based objective function (6), which is an approximation to the actual

system reliability. To check how close f̂(x) is to f(x), sample approximation gap δ is defined, which can check
the effectiveness of sample-based model (6). Next, ∆ is calculated to check how our solution x̂∗ is different
from the optimal or best solution of the original problem. Finally, %opt is defined to check how often our
algorithms can find an optimal solution for benchmark instances and %best is used for random instances, where
optimality is not verified. Although the exact optimality is not verified for random instances, all algorithms
converge to a specific value for each instance, which implies the solutions are very likely to be the optimal
solution.

4.1 Benchmark and random instances

Although there are many benchmark instances, including the well-known instances of Coit and Konak [9],
many of them are either for homogeneous systems, heterogeneous series–parallel systems, or heterogeneous
complex systems with additional decisions for the reliability of the components. While our algorithms can
also be used for heterogeneous series–parallel systems, we believe the existing algorithms such as Caserta and
Voß[6] are much more efficient for this simpler version of RAP. Hence, complex homogeneous system examples
in Table 2 from the literature are used in the experiment.

Instance System n m Type Reference
Benchmark 1 System 1 in Figure 2 5 1 Homogeneous Aggarwal [2]
Benchmark 2 System 2 in Figure 2 5 1 Homogeneous Aggarwal [2]
Benchmark 3 System 4 in Figure 2 7 2 Homogeneous Ryoo [30]

Table 2: Benchmark instances
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Two instances (Benchmarks 1 and 3) are directly from the literature, while Benchmark 2 adopts the
resource and reliability data of Aggarwal [2] for the network in Figure 2(b). The data can be found in each of
the papers. The optimal solutions and system reliabilities are known.

Benchmark 1: x∗ = [3 1 2 2 1] with R∗ = 0.9932
Benchmark 2: x∗ = [1 3 1 1 4] with R∗ = 0.9993
Benchmark 3: x∗ = [1 2 2 2 1 3 1] with R∗ = 0.9949

Note that the benchmark instances in Table 2 can be quickly solved by the branch-and-bound algorithm of
Ha and Kuo [15], where their algorithm takes less than 0.1 seconds to solve the similar size problems. We use
these benchmark instances only for demonstrating the behavior of the proposed models and algorithms.

Next, random instances are generated for heterogeneous complex systems based on Systems 1–4 in Figure
2. Note that Systems 1 and 2 can share instances while different s–t cuts are needed. Hence, instances are
generated for n ∈ {5, 6, 7} and Systems 1 and 2 share the instances with n = 5. For each n ∈ {5, 6, 7},
instances are generated for nH = 2, 3, 4. Hence, there are nine pairs of (n, nH). For each (n, nH) pair, four
random instances are generated. In summary, a total of 36 random instances are generated and each system
in Figure 2 gets 12 instances.

Given a uniform random number γjh ∈ [0, 1] for type h component at subsystem j, values are created by

rjh =round(0.5 + 0.05
√
nH + 0.2γjh,2),

aijh =round(1 + γ + 3γjh,2),

bi = round
({∑

j∈J
[

minh∈H aijh
]}

(1.5 + 0.5γ), 0
)

,

where γ ∈ [0, 1] is randomly generated for each time needed. To avoid unnecessary numerical errors, bi is
rounded to an integer and two digits are kept after the decimal point for rjh and aijh. Note that rjh and aijh
are correlated through γjh. If γjh is large, then both rjh and aijh are large, while there are some random
variations due to γ. The formula for bi ensures that the available resource should be between 150% and 200%
compared with the case when the minimum amount of resource is used to make the system work (at least one
component should be placed for each subsystem). In Table 3, the types of the randomly generated instances
are summarized. The instances and the best known solutions are available in the online supplement.

System Network n nH m Type
System 1 System 1 in Figure 2 5 2,3,4 2 Heterogeneous
System 2 System 2 in Figure 2 5 2,3,4 2 Heterogeneous
System 3 System 3 in Figure 2 6 2,3,4 2 Heterogeneous
System 4 System 4 in Figure 2 7 2,3,4 2 Heterogeneous

Table 3: Types of random instances

4.2 Result of MILP and AID for benchmark instances

For each benchmark instance, 100 sample sets were used for each of the sample sizes |S| in {1, 2, 4, 8, 16, 32, 64, 128}×
1, 000. Then, the averages of the 100 results are reported in Figures 5 and 6. In all plots, gray squares with
a dashed black line represent MILP and black circles with a gray line represent AID. For all series in all plots,
each marker represents the average of the results obtained from the 100 different sample sets.

In Figure 5, the approximation gap (δ) of MILP model (5) is plotted to check the convergence of the sample-
based objective function of MILP to the actual system reliability. As sample size nS increases, δ decreases and
converges to near zero value. Among the three benchmark instances, the δ values of Benchmark 2 are the
smallest for all sample sizes. We think this is due to the structure of the system, as Subsystem 5 of Benchmark
2 provides more alternatives to achieve higher system reliability than Subsystem 5 of Benchmark 1.

In Figure 6, MILP and AID are compared based on the three by three plot matrix that summarizes the
performance measures for the three benchmark instances. Each row of the plot matrix is for a performance
measure, and each column of the plot matrix is for a benchmark instance. For example, the plot in the third
column of the first row shows %opt values for Benchmark 3 over increasing sample sizes.
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Figure 5: Approximation gap (δ) of MILP for benchmark instances

Let us consider %opt in the first row of the plot matrix. Even when sample size nS is 1000, both MILP
and AID are able to find an optimal solution with approximately 20% and 30%, respectively, on average across
the three benchmark instances. For both algorithms, %opt converges to 100% as the sample size increases.
However, the %opt values of AID are always higher than that of MILP, as AID examines multiple solutions
with respect to the original objective function in each iteration. Among the three instances, %opt values of
Benchmark 2 show slower convergence due to the structure of the system. Having an interconnected subsystem
in Benchmark 2 generates multiple optimal solutions for the sample-based objectives and this prevents finding
the optimal solution to the original problem when the sample size is small.
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Figure 6: Result of MILP and AID for benchmark instances

The values of ∆ also show the effectiveness of both algorithms. The average gap ∆ decreases and converges
to zero as the sample size increases. When the sample size is small, ∆ values vary over different systems.
However, for the largest sample size, all systems have near-zero ∆ values. Hence, with a sufficiently large nS,
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both algorithms find an optimal solution. The execution times for all instances and sample sizes are within
a second in most cases. The average execution times of MILP for the largest sample size nS = 128, 000 are
0.26, 0.26, and 1.17 seconds for Benchmarks 1,2, and 3, respectively. The average times of AID for the largest
sample size nS = 128, 000 are 0.34, 0.26, and 0.94 seconds for Benchmarks 1,2, and 3, respectively. The plots
in the third row show that the execution times increase with sample size. Between the two algorithms, MILP
is faster for Benchmarks 1 and 2. However, for a larger system (Benchmark 3), MILP is faster when the sample
size is small but slower when nS ≥ 64, 000.

In summary, the result shows (i) MILP and AID converge to optimal with higher probabilities as nS increases,
(ii) AID converges faster than MILP, and (iii) AID becomes attractive as nS increases as it is faster and has
higher %opt values.

4.3 Result of MILP and AID for random instances

In Table 4, the results for the 48 random instances are presented. For each instance, 20 sample sets are tested
for each of sample sizes nS = 1000, 2000, 4000, and 8000. After calculating the performance measures, the
results are aggregated by n and nH to present the averages. Hence, each row in Table 4 is the average of 80
results (20 sample sets × 4 instances).

Data Samples MILP AID AIDheur (tol = 0.002)

(n, nH) |S| |S̄| Time %best ∆ δ Time %best ∆ Time %best ∆

S1

(5,2) 1000 762 0.7 18% 0.0044 0.0093 1.9 55% 0.0020 1.7 53% 0.0021
(5,2) 2000 1363 1.8 33% 0.0027 0.0054 4.5 78% 0.0004 3.8 75% 0.0006
(5,2) 4000 2375 4.1 55% 0.0018 0.0035 9.2 93% 0.0000 7.3 88% 0.0001
(5,2) 8000 4038 11.9 75% 0.0007 0.0021 20.0 95% 0.0000 15.9 93% 0.0000
(5,3) 1000 974 1.8 23% 0.0053 0.0122 7.1 50% 0.0013 6.4 50% 0.0013
(5,3) 2000 1913 5.0 38% 0.0025 0.0065 17.4 88% 0.0004 15.2 88% 0.0004
(5,3) 4000 3722 18.4 53% 0.0014 0.0042 46.1 93% 0.0002 36.9 90% 0.0002
(5,3) 8000 7164 75.4 68% 0.0008 0.0025 152.0 95% 0.0001 109.1 88% 0.0003
(5,4) 1000 997 2.3 30% 0.0036 0.0102 9.9 58% 0.0008 8.6 58% 0.0009
(5,4) 2000 1990 7.1 53% 0.0023 0.0065 25.1 80% 0.0001 21.2 78% 0.0002
(5,4) 4000 3963 28.7 45% 0.0013 0.0046 67.5 78% 0.0002 52.9 73% 0.0002
(5,4) 8000 7874 122.4 55% 0.0010 0.0031 259.4 85% 0.0000 186.6 80% 0.0001

S2

(5,2) 1000 762 0.8 18% 0.0043 0.0087 1.5 35% 0.0017 1.2 35% 0.0018
(5,2) 2000 1363 1.6 30% 0.0024 0.0047 4.2 43% 0.0011 3.0 38% 0.0013
(5,2) 4000 2375 3.8 45% 0.0014 0.0028 9.2 68% 0.0005 6.6 58% 0.0007
(5,2) 8000 4038 11.2 70% 0.0005 0.0015 19.6 88% 0.0001 12.8 78% 0.0003
(5,3) 1000 974 2.1 30% 0.0034 0.0083 5.2 38% 0.0016 4.5 38% 0.0017
(5,3) 2000 1913 5.3 40% 0.0016 0.0046 14.4 73% 0.0004 10.7 65% 0.0007
(5,3) 4000 3722 18.6 50% 0.0012 0.0034 35.6 75% 0.0004 24.6 68% 0.0006
(5,3) 8000 7164 76.4 65% 0.0004 0.0020 107.3 88% 0.0001 68.6 75% 0.0002
(5,4) 1000 997 2.9 33% 0.0038 0.0096 10.9 45% 0.0011 9.5 40% 0.0012
(5,4) 2000 1990 8.7 33% 0.0024 0.0063 30.6 48% 0.0006 24.2 45% 0.0008
(5,4) 4000 3963 33.4 43% 0.0014 0.0039 82.5 60% 0.0004 60.5 58% 0.0004
(5,4) 8000 7874 152.6 58% 0.0007 0.0027 287.7 73% 0.0002 197.9 58% 0.0004

S3

(6,2) 1000 925 1.0 5% 0.0032 0.0083 2.1 53% 0.0005 1.7 53% 0.0007
(6,2) 2000 1767 2.3 5% 0.0023 0.0050 5.4 50% 0.0004 4.1 45% 0.0005
(6,2) 4000 3317 6.6 13% 0.0009 0.0028 11.2 63% 0.0002 8.0 50% 0.0003
(6,2) 8000 6141 20.8 25% 0.0006 0.0020 26.1 75% 0.0001 17.5 63% 0.0002
(6,3) 1000 995 2.9 3% 0.0037 0.0098 7.8 15% 0.0015 6.2 13% 0.0018
(6,3) 2000 1982 9.2 0% 0.0031 0.0067 26.0 25% 0.0009 18.1 18% 0.0013
(6,3) 4000 3936 35.1 8% 0.0016 0.0041 75.9 35% 0.0005 45.8 13% 0.0008
(6,3) 8000 7795 151.0 15% 0.0012 0.0028 267.7 50% 0.0003 147.8 40% 0.0005
(6,4) 1000 1000 3.2 15% 0.0039 0.0088 9.6 45% 0.0010 8.6 43% 0.0011
(6,4) 2000 1999 8.8 30% 0.0020 0.0051 26.6 58% 0.0005 21.5 53% 0.0006
(6,4) 4000 3998 35.1 33% 0.0018 0.0036 77.0 65% 0.0005 55.9 58% 0.0005
(6,4) 8000 7992 149.4 45% 0.0012 0.0025 282.8 78% 0.0002 182.3 68% 0.0002

S4

(7,2) 1000 972 1.7 23% 0.0032 0.0094 4.0 63% 0.0003 3.5 58% 0.0003
(7,2) 2000 1907 4.6 38% 0.0017 0.0052 8.2 80% 0.0002 6.9 70% 0.0002
(7,2) 4000 3708 13.2 50% 0.0009 0.0035 18.7 85% 0.0001 13.9 80% 0.0001
(7,2) 8000 7127 52.4 60% 0.0003 0.0020 53.4 95% 0.0000 37.1 93% 0.0000
(7,3) 1000 999 5.5 15% 0.0049 0.0089 12.8 40% 0.0024 10.8 38% 0.0025
(7,3) 2000 1997 19.7 48% 0.0020 0.0046 35.7 73% 0.0007 27.0 65% 0.0010
(7,3) 4000 3991 72.7 70% 0.0008 0.0028 139.2 95% 0.0001 89.2 93% 0.0002
(7,3) 8000 7970 318.7 70% 0.0007 0.0019 640.8 93% 0.0001 415.4 85% 0.0002
(7,4) 1000 1000 6.8 48% 0.0031 0.0078 16.6 68% 0.0011 15.6 68% 0.0011
(7,4) 2000 2000 23.0 63% 0.0013 0.0045 37.3 78% 0.0004 31.6 75% 0.0005
(7,4) 4000 4000 87.5 75% 0.0004 0.0025 151.8 93% 0.0000 117.2 88% 0.0001
(7,4) 8000 7999 403.8 75% 0.0003 0.0016 653.3 95% 0.0000 491.4 95% 0.0000

Table 4: Results of MILP, AID, and AIDheur for random instances

For each (n, nH) pair, as nS increases, all algorithms have increasing execution times, %best, and ∆ values.
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This implies that, if nS is larger, then the algorithms are more likely to provide an optimal solution. However,
the execution times increase quickly. While all three algorithms MILP, AID, and AIDheur find the optimal
solution with higher chance as nS increases, the convergence rates of %best are different for the three algorithms.
The %best value of MILP is up to 33% lower than the other two. In terms of the solution speed, MILP is the
fastest, while the relative speed up by MILP is decreasing in nS. Hence, if the sample size is very large, it is
beneficial to run AID orAIDheur.

To summarize the result in Table 4, scatter plots for two core performance measures %best and time are
presented in Figures 7 and 8 by aggregating the result by nS, nH, and system types. Each plot in Figure 7
is for the aggregated result by nS and nH, where the four markers of each algorithm are for nS = 1000, 2000,
4000, and 8000. Similarly, Each plot in Figure 8 is for the aggregated result by nS and system type. In all
plots, the horizontal and vertical axes represent time and %best, respectively, and the horizontal axes are in
log scale to display the trend better. In each plot, Pareto frontiers (dotted lines) are also plotted to indicate
the most efficient algorithm achieving the highest %best value per unit time.
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Figure 7: Scatter plots of time and %best by nH for random instances

In all plots of Figures 7 and 8, AID and AIDheur outperform MILP. Given a fixed time, either AID or AIDheur
provides the highest %best values. The Pareto frontier lines are mostly formed by AID and AIDheur, which
implies the two algorithms are more efficient than MILP. In the three plots of Figure 7, the execution times
are increasing and %best values are decreasing as nH increases.
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Figure 8: Scatter plots of time and %best by system types for random instances

In the four plots of Figure 8, the execution times are increasing as n increases (Systems 1–4 have n = 5, 5, 6,
and 7, respectively). While the convergences of %best do not have a clear trend over n or system types, we
think this is due to the random instances and different system structures.

4.4 Comparison of all proposed algorithms

In Table 4, AIDheur with 1000 samples frequently finds optimal solutions (45% on average) in a few seconds
(6.5 seconds on average). This observation naturally suggests a heuristic algorithm by running AIDrep multiple
times with different sample sets. Let nR be the number of sample sets (or number of replications). In this
section, the performance of AIDrep is tested by running the algorithm with nR = 5, 10, 15, 20, and 25 sample
sets over five different random number sets, where each sample set contains nS = 1000 samples.

In Table 5, the result for AIDrep is presented, where each row shows the average of 20 results (4 instances
× 5 random number sets). For most of the cases, AIDheur is able to find the best known solution with 100%

18



www.manaraa.com

probability, while %best values are lower for Systems 2 and 4 with nH = 3. Because System 2 with nH = 4
has near-perfect %best values, we think that the bad performances for Systems 2 and 4 with nH = 3 are due
to the random instances and sample sets.

nR = 5 nR = 10 nR = 15 nR = 20 nR = 25

nH Time %best ∆ Time %best ∆ Time %best ∆ Time %best ∆ Time %best ∆
2 9 100% 0.0000 16 100% 0.0000 25 100% 0.0000 33 100% 0.0000 42 100% 0.0000

S1 3 33 100% 0.0000 62 100% 0.0000 95 100% 0.0000 125 100% 0.0000 156 100% 0.0000
4 48 85% 0.0001 90 90% 0.0000 133 95% 0.0000 176 95% 0.0000 224 100% 0.0000
2 7 70% 0.0004 13 100% 0.0000 19 100% 0.0000 26 100% 0.0000 32 100% 0.0000

S2 3 22 80% 0.0002 45 95% 0.0000 66 95% 0.0000 89 95% 0.0000 110 100% 0.0000
4 51 90% 0.0001 94 95% 0.0000 137 95% 0.0000 183 95% 0.0000 238 100% 0.0000
2 9 90% 0.0000 18 95% 0.0000 26 100% 0.0000 34 100% 0.0000 43 100% 0.0000

S3 3 31 30% 0.0005 57 45% 0.0003 85 65% 0.0002 115 80% 0.0000 142 85% 0.0000
4 44 85% 0.0001 82 85% 0.0000 122 85% 0.0000 166 85% 0.0000 203 90% 0.0000
2 19 95% 0.0000 38 100% 0.0000 57 100% 0.0000 78 100% 0.0000 94 100% 0.0000

S4 3 53 90% 0.0004 103 100% 0.0000 151 100% 0.0000 203 100% 0.0000 249 100% 0.0000
4 81 90% 0.0001 155 100% 0.0000 229 100% 0.0000 306 100% 0.0000 380 100% 0.0000

Table 5: Result of AIDrep for random instances

In Figure 9, all four proposed algorithms are compared based on the scatter plots of execution time, %best,
and ∆. The horizontal axis is for time in both plots and the vertical axis is for %best and ∆ in Figures
9(a) and 9(b), respectively. The horizontal axes are in log scale to display the trend better. For MILP, AID,
AIDheur, the four markers represent the aggregated result for nS = 1000, 2000, 4000, and 8000. Hence, each
marker is an average of 320 results over different system types and instances. For AIDrep, the five markers
represent nR = 5,10,15,20, and 25. In the scatter plot, an algorithm with smaller execution time is better for
a fixed %best value (or ∆). Similarly, an algorithm with higher %best value (or lower ∆) is better for a fixed
execution time. For each algorithm, a trend line is added to represent the trend of %best (or ∆) over changing
execution times, where the equations are available in the caption.
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Figure 9: Scatter plots of %best and ∆ against execution time. In Figure (a), equations for trend lines are
%best = 1.39 + 8.95 ln(time) for MILP, %best = 29.35 + 10.51 ln(time) for AID, %best = 30.59 + 9.37 ln(time)
for AIDheur, and %best = 53.75 + 8.81 ln(time) for AIDrep. In Figure (b), equations for trend lines are ∆ =

0.0057(time)
−0.437

for MILP, ∆ = 0.0046(time)
−0.699

for AID, ∆ = 0.0036(time)
−0.577 AIDheur, and ∆ =

2.2605(time)
−2.652

for AIDrep

For a fixed execution time 128 seconds, AIDrep achieves the highest %best value (98%), whereas AID,
AIDheur, and MILP achieves approximately 80%, 75%, and 57%, respectively. For a fixed %best value 83%,
the execution time of AIDrep (33 seconds) is approximately seven times faster than AID (230 seconds), while
the other two algorithms are expected spend more than 256 seconds to achieve %best ≥ 83%.

The equations of the trend lines also confirm the superiority of AIDrep. Given a fixed target %best = 99%,
the expected execution times are 170, 755, 1481, and 54510 seconds for AIDrep, AID, AIDheur, and MILP,
respectively. Given a fixed target ∆ = 0.0001, the expected execution times are 44, 239, 498, and 10424
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seconds for AIDrep, AID, AIDheur, and MILP, respectively. The largest intercept 53.75 of AIDrep indicates that
the algorithm would give the highest %best value when a very small amount of time is allowed. The largest
slope 10.51 of AID indicates that %best increases faster per unit time than the other algorithms do.

In all of the results presented, the execution times are closely related to the number of component types
(n · nH), number of samples (nS), and the number of replications (nR). The execution times tend to increase
rapidly in increasing values of the three parameters. To show the weakness of the proposed algorithms, three-
dimensional plots are presented for the three algorithms MILP, AIDheur, and AIDrep in Figure 10. The plot
for AID is omitted as it looks similar to AIDheur. In each of the 3-D plots, the X and Y axes (horizontal) are
for number of component types (n · nH) and number of samples (or number of replications), and the Z axis
(vertical) is for execution time.
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Figure 10: 3-D plot of number of component types, number of samples (or replications), and execution times

Given a smaller value of n · nH or nS(nR), the execution times of the three algorithms slowly increase.
However, when n · nH and nS(nR) increase, the execution time increases rapidly. Hence, the algorithms are
likely to spend a very long time for instances with large values of n, nH, or nS(nR). Among the three algorithms,
AIDrep is the most scalable as it has the smallest slope for execution time over increasing n · nH and nR.

4.5 Comparison with metaheuristic algorithms

In the previous section, we conclude that AIDrep is the most efficient algorithm among the proposed algo-
rithms. However, because AIDrep uses a limited number of samples (|S| = 1, 000) and does not guarantee an
approximated optimal, it can be regarded as a heuristic. Hence, in this section, the performance of AIDrep

is compared with two popular metaheuristic algorithms in the literature. The GA and PSO algorithms are
implemented in C# based on Ardakan et al. [3] and Wang and Li [37], respectively. While the original GA
and PSO algorithms do not solve exactly the same problems with ours, the algorithms are designed to handle
heterogeneous components and can solve our problem (2) with simple modifications. In our implementations,
all of the algorithmic components and parameter settings are adopted directly from the corresponding papers
[3, 37]. For GA, MaxGen=300 (number of generations), γ1 = 0.5 (penalty for constraint violations), Npop=1000
(number of population), and rC = 0.7, rM = 0.4, pM = 0.25 (parameters for mutation and crossover opera-
tors) are used. Among all crossover and mutation operators proposed by Ardakan et al. [3], two crossover
operators (Double Point, Max-Min) and two mutation operators (Simple, Max-Min) are used as suggested by
the authors for complex systems. For PSO, Npa = 300 (number of particles), γ1 = 0.4 (initial penalty for
constraint violations), Nit = 100 (number of iterations), and w = 0.6, l1 = l2 = 1.7 (parameters for velocity
updates) are used. For both algorithms, to incorporate the constraints, the following penalty-based objective
function is used.

max f(x) + γ1

[∑
i∈I max{A>i x− bi, 0}+

∑
j∈J max{1−

∑
h∈Hj xjh, 0}+

∑
j∈J

∑
h∈Hj max{xjh − ujh, 0}

]
For both algorithms, this penalized objective function (fitness) is used throughout the iterations and the best
feasible solution is kept separately.

Note that the performance of the algorithms depends on the random number sets, because both algorithms
use random numbers to generate or modify solutions. Therefore, running the algorithms multiple times
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and reporting the best solution will improve the performance of the algorithms and reduce the performance
variations due to random numbers. Similar to AIDrep, nR is used to indicate the number of replications, and
various values of nR are tested for both benchmark algorithms. The nR values are selected to have ranges of
execution times similar to AIDrep. The performance of GA is tested for nR = 5, 10, 20, 40, and 80 with five
different random number sets for each nR. The performance of PSO is tested for nR = 80, 160, 320, 640 and
1280 with five different random number sets for each nR.

In Tables 6 and 7, the results of GA and PSO for the random instances, respectively, are presented, where
each row shows the average of 20 results (4 instances × 5 random number sets). The results can be compared
to the performance of AIDrep in Table 5.

nR = 5 nR = 10 nR = 20 nR = 40 nR = 80

nH Time %best ∆ Time %best ∆ Time %best ∆ Time %best ∆ Time %best ∆
2 6 30% 0.0020 11 60% 0.0009 23 75% 0.0004 46 80% 0.0002 91 95% 0.0002

S1 3 7 55% 0.0037 13 70% 0.0020 27 90% 0.0003 54 95% 0.0001 108 95% 0.0001
4 8 40% 0.0042 16 60% 0.0026 32 80% 0.0009 64 80% 0.0009 127 80% 0.0009
2 6 80% 0.0005 11 80% 0.0002 23 95% 0.0001 45 100% 0.0000 91 100% 0.0000

S2 3 7 35% 0.0045 14 45% 0.0039 27 60% 0.0029 54 85% 0.0012 108 90% 0.0007
4 8 55% 0.0018 16 55% 0.0014 32 60% 0.0011 64 65% 0.0006 127 70% 0.0003
2 6 40% 0.0005 13 40% 0.0004 26 65% 0.0001 52 75% 0.0001 104 75% 0.0000

S3 3 8 30% 0.0015 16 40% 0.0007 32 40% 0.0005 63 55% 0.0003 127 60% 0.0002
4 9 5% 0.0024 19 30% 0.0016 37 35% 0.0012 75 40% 0.0012 149 50% 0.0009
2 7 25% 0.0031 15 35% 0.0020 30 50% 0.0017 59 60% 0.0014 118 70% 0.0009

S4 3 9 0% 0.0057 18 0% 0.0047 36 0% 0.0040 73 5% 0.0034 146 5% 0.0034
4 11 10% 0.0108 22 15% 0.0092 43 20% 0.0074 87 25% 0.0057 173 25% 0.0051

Table 6: Result of GA for random instances

Both algorithms show improving performances in increasing nR. When nR is larger, %best values are larger
and ∆ values are smaller. For a fixed system type, both algorithms tend to perform worse as nH increases.
The %best values decrease and ∆ values increase rapidly as nH increases. The average performances in Tables
6 and 7 imply that the solution quality of both metaheuristic algorithms can be very low for difficult problems
when nH is large. For example, consider System 4 with nH = 4. For 80 replications of GA, it takes 173 seconds
to report a solution, the chance of getting the best known solution is 25% and the average gap from the best
known objective value is 0.0051. For 1280 replications of PSO, it takes 155 seconds to report a solution, the
chance of getting the best known solution is 15% and the average gap from the best known objective value is
0.0066. Between the two metaheuristic algorithms with the largest nR, PSO performs slightly better than GA.
The performance of PSO is perfect when nH = 2. However, the performance of PSO decreases rapidly as nH

increases.

nR = 80 nR = 160 nR = 320 nR = 640 nR = 1280

nH Time %best ∆ Time %best ∆ Time %best ∆ Time %best ∆ Time %best ∆
2 5 75% 0.0007 10 85% 0.0005 19 100% 0.0000 39 100% 0.0000 76 100% 0.0000

S1 3 6 45% 0.0012 12 50% 0.0010 24 70% 0.0006 48 90% 0.0001 96 100% 0.0000
4 7 15% 0.0034 15 25% 0.0025 29 40% 0.0021 58 50% 0.0015 116 70% 0.0001
2 5 95% 0.0000 10 100% 0.0000 20 100% 0.0000 39 100% 0.0000 77 100% 0.0000

S2 3 6 45% 0.0009 12 55% 0.0003 24 65% 0.0003 48 90% 0.0001 96 100% 0.0000
4 7 45% 0.0016 15 60% 0.0005 29 65% 0.0005 58 85% 0.0001 116 85% 0.0001
2 6 70% 0.0001 12 90% 0.0000 24 95% 0.0000 49 100% 0.0000 96 100% 0.0000

S3 3 7 10% 0.0014 14 15% 0.0010 29 35% 0.0006 58 45% 0.0004 115 55% 0.0003
4 8 25% 0.0032 17 30% 0.0019 34 40% 0.0009 68 55% 0.0006 135 60% 0.0005
2 7 60% 0.0002 13 75% 0.0001 26 85% 0.0001 52 90% 0.0001 103 100% 0.0000

S4 3 8 5% 0.0037 17 15% 0.0026 34 20% 0.0020 67 35% 0.0014 134 50% 0.0008
4 10 0% 0.0173 19 0% 0.0138 39 0% 0.0117 78 0% 0.0102 155 15% 0.0066

Table 7: Result of PSO for random instances

Next, the gap from the best (∆) values for the three algorithms (AIDrep with nR = 25, GA with nR = 80,
and PSO with nR = 1280) are compared to show how robust each algorithm is. In Figure 11, the distributions
of ∆ values are presented for System 3 with nH = 3 and 4. The two system types are selected because AIDrep

does not achieve 100% for %best. In each column chart of Figure 11, the horizontal and vertical axes are for
the bins for ∆ values and the frequencies, respectively. The column charts show that AIDrep returns near-best
solution (within 0.0001 from the best objective function value) with 100% and 95% chances. On the other
hand, while GA and PSO have the average ∆ values less than 0.001, bad solutions are occasionally returned.
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Figure 11: Distributions of ∆ values of AIDrep, GA, and PSO

In Figure 12, the three algorithms are compared based on the scatter plots of execution time, %best, and
∆. The horizontal axes are for execution times in both plots and the vertical axes are for %best and ∆
in Figures 12(a) and 12(b), respectively. The horizontal axes are in log scale to display the trend better.
For all algorithms, the five markers of the corresponding series are for the result of the five nR values. For
each algorithm, a trend line is added to represent the trend of %best (or ∆) over changing execution times,
where the equations are available in the caption. For %best and ∆, logarithmic and power functions are used,
respectively.
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Figure 12: Scatter plots of %best and ∆ against execution time. In Figure (a), equations for trend lines are
%best = 13.61+14.53 ln(time) for PSO, %best = 9.65+12.69 ln(time) for GA, and %best = 53.75+8.81 ln(time)

for AIDrep. In Figure (b), equations for trend lines are ∆ = 0.0073(time)
−0.476

for PSO, ∆ = 0.0079(time)
−0.431

for GA, and ∆ = 2.2605(time)
−2.652

for AIDrep

The scatter plots clearly show that AIDrep outperforms the two metaheuristic algorithms. Given a fixed
time, it find the best solution with the highest chance and the average gap is the smallest among the algorithms
compared. The equations of the trend lines also confirm the superiority of AIDrep. Given a fixed target %best =
99%, the expected execution times are 170, 496, and 1142 seconds for AIDrep, PSO, and GA, respectively. Given
a fixed target ∆ = 0.0001, the expected execution times are 44, 8214, and 25284 seconds for AIDrep, PSO, and
GA, respectively. For both criteria, AIDrep achieves the target value with the fastest time.
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5 Conclusion

In this paper, MILP models and AID algorithms are proposed for heterogeneous complex systems based
on random samples. While there exist exact models and algorithms for homogeneous complex systems and
heterogeneous series systems, there is no exact algorithm for the heterogeneous complex systems. Our MILP
model is the first mathematical model with linear objective function approximating the nonconvex nonlinear
system reliability function of complex system. Our models are formulated based on random samples, which
is different from the existing models and algorithms, and the approximation errors decrease as sample size
increases. The AID algorithm is also proposed using a new aggregation approach to improve solution quality
and time.

Although the proposed models and algorithms are not exact, the computational experiment confirms the
convergence to an optimal or near-optimal solution as sample size increases. It is also shown that an optimal or
near-optimal solution can be obtained with a small number of samples. Among all versions of the algorithms
proposed, AIDrep performs the best in practice. The comparison with the two metaheuristic algorithms also
confirms that AIDrep is very competitive.

One of the straightforward limitations of the proposed algorithms is the high computational complexity.
The algorithms have rapidly increasing execution times in problem size, as shown in Figure 10. Because of this
limitation, complex heterogeneous systems with five, six, and seven subsystems are tested, whereas the well-
known benchmark instances of Coit and Konak [9] consider serial heterogeneous systems with 20 subsystems.
Hence, improving the efficiency of the current models and algorithms is necessary to solve the problem for
larger complex systems.

Several future research directions are available. It should be worthwhile to improve the MILP model by
reducing the number of constraints or variables, as the current models and algorithms cannot solve larger
problems to optimality within a reasonable amount of time. In addition, because the model includes popular
constraints such as Knapsack and assignment constraints, developing relaxation-based algorithms is promising.
Finally, extending the models to other versions of RAP, such as cost minimization or maximization of percentile
life of the system, can be studied.

References

[1] U. Abel and R. Bicker. Determination of all minimal cut-sets between a vertex pair in an undirected
graph. IEEE Transactions on Reliability, R-31(2):167–171, 1982.

[2] K. K. Aggarwal. Redundancy optimization in general systems. IEEE Transactions on Reliability,
25(5):330–332, 1976.

[3] M. A. Ardakan, M. Sima, A. Z. Hamadani, and D. W. Coit. A novel strategy for redundant components
in reliability–redundancy allocation problems. IIE Transactions, 48(11):1043–1057, 2016.

[4] S. Arunkumar and S. H. Lee. Enumeration of all minimal cut-sets for a node pair in a graph. IEEE
Transactions on Reliability, R-28(1):51–55, 1979.

[5] R. Bellman and S. Dreyfus. Dynamic programming and the reliability of multicomponent devices. Oper-
ations Research, 6(2):200–206, 1958.

[6] M. Caserta and S. Voß. An exact algorithm for the reliability redundancy allocation problem. European
Journal of Operational Research, 244(1):110 – 116, 2015.

[7] M.-S. Chern. On the computational complexity of reliability redundancy allocation in a series system.
Operations Research Letters, 11(5):309–315, 1992.

[8] D. W. Coit, T. Jin, and N. Wattanapongsakorn. System optimization with component reliability esti-
mation uncertainty: a multi-criteria approach. IEEE Transactions on Reliability, 53(3):369–380, Sept
2004.

[9] D. W. Coit and A. Konak. Multiple weighted objectives heuristic for the redundancy allocation problem.
IEEE Transactions on Reliability, 55(3):551–558, Sept 2006.

23



www.manaraa.com

[10] D. W. Coit and A. E. Smith. Genetic algorithm to maximize a lower-bound for system time-to-failure
with uncertain component weibull parameters. Computers & Industrial Engineering, 41(4):423 – 440,
2002.

[11] D. W. Coit, A. E. Smith, and D. M. Tate. Adaptive penalty methods for genetic optimization of con-
strained combinatorial problems. INFORMS Journal on Computing, 8(2):173–182, 1996.

[12] M. Djerdjour and K. Rekab. A branch and bound algorithm for designing reliable systems at a minimum
cost. Applied Mathematics and Computation, 118(2):247 – 259, 2001.

[13] A. O. C. Elegbede, C. Chu, K. H. Adjallah, and F. Yalaoui. Reliability allocation through cost minimiza-
tion. IEEE Transactions on Reliability, 52(1):106–111, 2003.

[14] R. Gordon. Optimum component redundancy for maximum system reliability. Operations Research,
5(2):229–243, 1957.

[15] C. Ha and W. Kuo. Reliability redundancy allocation: an improved realization for nonconvex nonlinear
programming problems. European Journal of Operational Research, 171(1):24–38, 2006.

[16] K. O. Kim and W. Kuo. Percentile life and reliability as performance measures in optimal system design.
IIE Transactions, 35(12):1133–1142, 2003.

[17] Y. H. Kim, K. E. Case, and P. M. Ghare. A method for computing complex system reliability. IEEE
Transactions on Reliability, R-21(4):215–219, Nov 1972.

[18] S. Kulturel-Konak, B. A. Norman, D. W. Coit, and A. E. Smith. Exploiting tabu search memory in
constrained problems. INFORMS Journal on Computing, 16(3):241–254, 2004.

[19] S. Kulturel-Konak, A. E. Smith, and D. W. Coit. Efficiently solving the redundancy allocation problem
using tabu search. IIE Transactions, 35(6):515–526, 2003.

[20] W. Kuo and R. Wan. Recent advances in optimal reliability allocation. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, 37(2):143–156, 2007.

[21] B. K. Lad, M. S. Kulkarni, and K. B. Misra. Optimal reliability design of a system. Handbook of
performability engineering, pages 499–519, 2008.

[22] G. Levitin, A. Lisnianski, and D. Elmakis. Structure optimization of power system with different redun-
dant elements. Electric Power Systems Research, 43(1):19 – 27, 1997.

[23] C.-Y. Li, X. Chen, X.-S. Yi, and J.-Y. Tao. Heterogeneous redundancy optimization for multi-state se-
ries–parallel systems subject to common cause failures. Reliability Engineering & System Safety, 95(3):202
– 207, 2010.

[24] Y.-C. Liang and A. E. Smith. An ant colony optimization algorithm for the redundancy allocation
problem. IEEE Transactions on Reliability, 53(3):417–423, Sept 2004.

[25] P. Lin, B. Leon, and T. Huang. A new algorithm for symbolic system reliability analysis. IEEE Trans-
actions on Reliability, 25(1):2–15, 1976.

[26] K. B. Misra. An algorithm for the reliability evaluation of redundant networks. IEEE Transactions on
Reliability, R-19(4):146–151, Nov 1970.

[27] Y. W. Park. Optimization for l1-norm error fitting via data aggregation. arXiv preprint arXiv:1703.04864,
2017.

[28] Y. W. Park and D. Klabjan. An aggregate and iterative disaggregate algorithm with proven optimality
in machine learning. Machine Learning, 105(2):199–232, 2016.

[29] V. R. Prasad, W. Kuo, and K. O. Kim. Maximization of a percentile life of a series system through
component redundancy allocation. IIE Transactions, 33(12):1071–1079, Dec 2001.

24



www.manaraa.com

[30] H. S. Ryoo. Robust metaheuristic algorithm for redundancy optimization in large-scale complex systems.
Annals of Operations Research, 133(1-4):209–228, 2005.

[31] M. Sallak, C. Simon, and J.-F. Aubry. A reliability graph approach for availability and redundancy
allocation: application to safety instrumented systems. Technical report, 2009.

[32] V. K. Sharma, M. Agarwal, and K. Sen. Reliability evaluation and optimal design in heterogeneous
multi-state series-parallel systems. Information Sciences, 181(2):362 – 378, 2011.

[33] C. Sung and Y. Cho. Reliability optimization of a series system with multiple-choice and budget con-
straints. European Journal of Operational Research, 127(1):159 – 171, 2000.

[34] C. S. Sung and Y. K. Cho. Branch-and-bound redundancy optimization for a series system with multiple-
choice constraints. IEEE Transactions on Reliability, 48(2):108–117, 1999.

[35] R. Tavakkoli-Moghaddam, J. Safari, and F. Sassani. Reliability optimization of series-parallel systems
with a choice of redundancy strategies using a genetic algorithm. Reliability Engineering & System Safety,
93(4):550 – 556, 2008.

[36] Y. Wang and L. Li. Heterogeneous redundancy allocation for series-parallel multi-state systems using hy-
brid particle swarm optimization and local search. IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans, 42(2):464–474, March 2012.

[37] Y. Wang and L. Li. A pso algorithm for constrained redundancy allocation in multi-state systems with
bridge topology. Computers & Industrial Engineering, 68:13 – 22, 2014.

[38] H. Yu, J. Yang, and J. Han. Classifying large data sets using svm with hierarchical clusters. In Proceedings
of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 306–
315, 2003.

[39] H. Yu, J. Yang, J. Han, and X. Li. Making SVMs scalable to large data sets using hierarchical cluster
indexing. Data Mining and Knowledge Discovery, 11(3):295–321, 2005.

25


	MILP Models for Complex System Reliability Redundancy Allocation with Mixed Components
	Recommended Citation

	Introduction
	MILP Models
	Reliability redundancy allocation problem for complex systems
	Graph representation and cuts
	Random sampling
	MILP models
	MILP for Heterogeneous Systems

	AID Algorithms
	Computational Experiment
	Benchmark and random instances
	Result of MILP and AID for benchmark instances
	Result of MILP and AID for random instances
	Comparison of all proposed algorithms
	Comparison with metaheuristic algorithms

	Conclusion

